101 Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following is not:
1
/ \
2 2
\ \
3 3
Note: Bonus points if you could solve it both recursively and iteratively.
Code: 1st Attempt:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
private boolean symmetric = true;
public boolean isSymmetric(TreeNode root) {
if (root == null) {
return true;
}
helper(root.left, root.right);
return symmetric;
}
private void helper(TreeNode lroot, TreeNode rroot) {
if (lroot == null && rroot == null) {
return;
}
if ((lroot == null && rroot != null) || (lroot != null && rroot == null)) {
symmetric = false;
// if no return here, lroot.left, rroot.right will have NullPointerException
return;
}
if (lroot.val == rroot.val) {
helper(lroot.left, rroot.right);
helper(lroot.right, rroot.left);
} else {
symmetric = false;
}
}
}
Updated based on w,(12.18.15)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isSymmetric(TreeNode root) {
if (root == null) {
return true;
}
return isSymmetric(root.left, root.right);
}
private boolean isSymmetric(TreeNode left, TreeNode right) {
if (left == null && right == null) {
return true;
}
if (left == null || right == null) {
return false;
}
return (left.val == right.val) && isSymmetric(left.left, right.right) && isSymmetric(left.right, right.left);
}
}